Appendix A
UML Graphical Notation

The inside covers of the book summarize the graphical notations for the class, state, and in-
teraction models. You can use these four pages as a quick reference while constructing or
reading diagrams. However, we must caution you that a novice cannot simply take these four
pages and understand them. To understand the concepts represented by the notation, refer to
the chapters of Part 1. To learn how to apply the notation and concepts within the software
development life cycle, consult the chapters in Part 2 and 3. The index can also help you find
relevant material in the book.

With the exception of the label for each construct and a few descriptive comments, all
of the diagram elements, text names, and punctuation symbols shown are part of the nota-
tion. The names in these diagrams (such as Class, attributel, operation, and event2) indicate
what kind of element they are examples of. You may wish to modify the syntax of names and
the declarations of attributes and signatures to make them consistent with the syntax of your
implementation language.

Most of the items shown are optional, especially during early stages of modeling. Even
in design, it is unwise to overspecify by including superfluous names and notations. For ex-
ample, when an association is labeled by end names, it is usually not necessary to give the
association itself a name. We have not indicated which elements are optional, because we
wanted to show only the actual UML notation wherever possible, without obscuring it with
an additional metanotation.

Please feel free to copy the notation summaries on the inside covers. You can obtain an
electronic copy at www.modelsoftcorp.com.

425

Appendix B

Glossary

The following terms are used in OO modeling for analysis, design, and implementation.

abstract class a class that has no direct instances. The UML notation is to italicize an
abstract class name or place the keyword {abstract} below or after the name. (Contrast
with concrete class.)

abstract operation an operation that lacks an implementation. A concrete descendant class
must provide a method to implement the operation. The UML notation is to italicize an
abstract operation name or place the keyword {abstract} after its name.

abstraction the ability to focus on essential aspects of an application while ignoring details.

access modifier (in Java) the means of controlling access to methods and data via public,
private, protected, and package visibility.

access specifier (in C++) the means of controlling access to methods and data via public,
private, and protected visibility as well as a friend declaration.

activation the period of time for an object’s execution. The UML notation is a thin rect-
angle. (Synonymous with focus of control.)

active object an object that has its own thread of control. (Contrast with passive object.)
activity a specification of executable behavior.

activity diagram a diagram that shows the sequence of steps that make up a complex
process.

activity token a token that can be placed on an activity symbol to show the progress of an
execution.

actor a direct external user of a system. The UML notation is a “‘stick man” icon.

aggregation a kind of association in which a whole, the assembly, is composed of parts.
Aggregation is often called the “a-part-of”” or “parts-explosion™ relationship and may be

426

Appendix B / Glossary 427

nested to an arbitrary number of levels. Aggregation bears the transitivity and antisym-
metry properties. The UML notation is a small hollow diamond superimposed on the
association end next to the assembly class. (Contrast with composition.)

analysis the development stage in which a real-world problem is examined to understand
its requirements without planning the implementation.

ancestor class a class that is a direct or indirect superclass of a given class. (Contrast with
descendant class.)

API (acronym) application programming interface.
application analysis the second substage of analysis that addresses the computer aspects of
the application that are visible to users.

application programming interface a collection of methods that provide the functionality
of an application.

architecture the high-level plan or strategy for solving an application problem.
assembly (for an aggregation) a class of objects that is composed of part objects.

association a description of a group of links with common structure and common seman-
tics. The UML notation is a line between classes that may consist of several line
segments.

association class an association that is also a class. Like the links of an association, the
instances of an association class derive identity from instances of the related classes.
Like a class, an association class can have attributes, operations, and participate in asso-
ciations. The UML notation is a box (a class box) attached to the association by a dashed
line.

association end an end of an association. A binary association has two ends, a ternary has
three ends, and so forth.

attribute a named property of a class that describes a value held by each object of the class.
The UML notation lists attributes in the second compartment of the class box.

automatic transition an unlabeled transition that automatically fires when the activity
associated with the source state is completed.

bag an unordered collection of elements with duplicates allowed. The UML notation is to
annotate an association end with {bag/.

base class (in C++) a superclass.

batch transformation (architectural style) a sequential input-to-output transformation, in
which inputs are supplied at the start and the goal is to compute an answer. There is no
ongoing interaction with the outside world. (Contrast with continuous transformation.)

boundary class a class of objects that provide a staging area for communications between
a system and an external source.

call-by-reference (in a programming language) a mechanism that passes arguments to a
method by passing the address of each argument. (Contrast with call-by-value.)

428 Appendix B / Glossary

call-by-value (in a programming language) a mechanism that passes arguments to a method
by passing a copy of the data values. If an argument is modified, the new value will not
take effect outside of the method that modifies it. (Contrast with call-by-reference.)

candidate key (in a relational database) a combination of columns that uniquely identifies
each row in a table. The combination must be minimal and include only those columns
that are needed for unique identification. No column in a candidate key can be null.

cardinality the count of elements that are in a collection. (Contrast with multiplicity.)

change event an event that is caused by the satisfaction of a boolean expression. The intent
of a change event is that the expression is continually tested—whenever the expression
changes from false to true the event happens. The UML notation is the keyword when
followed by a parenthesized boolean expression. (Contrast with guard condition.)

changeability an indication whether a property (such as an association end) can be modi-
fied after the initial value is created. The possibilities are changeable (can be updated)
and readonly (can only be initialized).

class a description of a group of objects with similar properties (attributes). common
behavior (operations and state diagrams), similar relationships to other objects, and
common semantics. The UML notation is a box with the name in the top compartment.

class design the development stage for expanding and optimizing the analysis models so
that they are amenable to implementation.

class diagram a graphic representation that describes classes and their relationships,
thereby describing possible objects. (Contrast with object diagram.)

class model a description of the structure of the objects in a system including their identity,
relationships to other objects, attributes, and operations.

classification a grouping of objects with the same data structure and behavior.
client a subsystem that requests services from another subsystem. (Contrast with server.)

coherence a property of an element, such as a class, an operation, or a package, such that it
is organized on a consistent plan and all its parts fit together toward a common goal.

completion transition a transition that automatically fires when the activity associated with
the source state is completed.

composite state a state that provides shared behavior for nested states. (Contrast with
nested state.)

composition a form of aggregation with two additional constraints. A part can belong to at
most one assembly. Furthermore, once a part has been assigned an assembly, it has a
coincident lifetime with the assembly. The UML notation is a small solid diamond
superimposed on the association end next to the assembly class. (Contrast with
aggregation.)

concrete class a class that can have direct instances. (Contrast with abstract class.)

concurrent two or more activities or events whose execution may overlap in time.

Appendix B / Glossary 429

condition (see guard condition).

constraint a boolean condition involving model elements such as objects, classes,
attributes, associations, and generalization sets. The UML notation for simple
constraints is a text string enclosed in braces or placed in a “dog-eared” comment box.
For complex constraints, you can use the Object Constraint Language.

constructor (in C++ and Java) an operation that initializes a newly created instance of a
class. (Contrast with destructor.)

container class a class of container objects. Examples include sets, arrays, dictionaries, and
associations.

container object an object that stores a collection of other objects and provides various
operations to access or iterate over its contents.

continuous transformation (architectural style) a system in which the outputs actively
depend on changing inputs and must be periodically updated. (Contrast with batch
transformation.)

control the aspect of a system that describes the sequences of operations that occur in
response to stimuli.

controller an active object that manages control within an application.

database a permanent, self-descriptive store of data that is contained in one or more files.
Self-description is what sets a database apart from ordinary files.

database management system the software for managing access to a database.

data dictionary the definition of all modeling elements (classes, associations, attributes,
operations, and enumeration values) and an explanation of the rationale for key
modeling decisions.

DBMS (acronym) database management system.

default value the value used to initialize an attribute or method argument.

delegation an implementation mechanism in which an object, responding to an operation
on itself, forwards the operation to another object.

denormalization the violation of normal forms. Developers should violate normal forms
only for good cause, such as to increase performance for a bottleneck. (See normal
form.)

derived class (in C++) a subclass.

derived element (in UML) an element that is defined in terms of other elements. Classes,
attributes, and associations can all be derived. Do not confuse the UML term derived
with the C++ derived class. A C++ derived class refers to the subclass of a generaliza-
tion and has nothing to do with UML’s meaning of derived element. The UML notation
is a slash preceding the element name.

descendant class a class that is a direct or indirect subclass of a given class. (Contrast with
ancestor class.)

430 Appendix B / Glossary

destructor (in C++) an operation that cleans up an existing instance of a class that is no
longer needed. (Contrast with constructor.)

development the construction of software.
development life cycle an approach for managing the process of building software.

development stage a step in the process of building software. This book covers the
following sequence of development stages: system conception, domain analysis, appli-
cation analysis, system design, class design, implementation modeling, and
implementation. Even though the development stages are ordered, all portions of an
application need not proceed in tandem. We do not mean to imply waterfall
development.

dictionary an unordered collection of object pairs with duplicates allowed. Each pair binds
a key to an element. You can then use the key to look up the element.

direction whether an argument to an operation/method is an input (in), output (out), or an
input argument that can be modified (inout).

do-activity an activity that continues for an extended time. The UML notation is “do /”
followed by the do-activity name.

domain analysis the first substage of analysis that focuses on modeling real-world things
that carry the semantics of an application.

dynamic binding a form of method resolution that associates a method with an operation
at run time, depending on the class of one or more target objects.

dynamic simulation (architectural style) a system that models or tracks objects in the real
world.

effect a reference to a behavior that is executed in response to an event. The UML notation
for an effect is a slash (“/”) followed by the activity name.

encapsulation the separation of external specification from internal implementation.
(Synonymous with information hiding.)

enterprise model a model that describes an entire organization or some major aspect of an
organization.

Entity-Relationship (ER) model a graphical approach to modeling originated by Peter
Chen that shows entities and the relationships between them. The UML class model is
based on the ER model.

entry activity an activity that is executed upon entry to a state. The UML notation is to list
an entry activity within a state preceded by “entry /”. (Contrast with exit activity.)

enumeration a data type that has a finite set of values. The UML notation is the keyword
«enumeration» above the enumeration name in the top section of a box. The second
section lists the enumeration values.

ER (acronym) Entity-Relationship model.

event an occurrence at a point in time. (Contrast with state.)

Appendix B / Glossary 431

event-driven control an approach in which control resides within a dispatcher or monitor
that the language, subsystem, or operating system provides. Developers attach applica-
tion methods to events, and the dispatcher calls the methods when the corresponding
events occur (“callback”). (Contrast with procedure-driven control.)

exit activity an activity that is executed just before exit from a state. The UML notation is
to list an exit activity within a state preceded by “exir/”. (Contrast with entry activity.)

extend (use case relationship) a relationship that adds incremental behavior to a use case.
Note that the extension adds itself to the base; in contrast, for an include relationship the
base explicitly incorporates the inclusion. The UML notation is a dashed arrow from the
extension use case to the base use case. The keyword «extend» annotates the arrow.
(Contrast with include.)

extensibility a property of software such that new kinds of objects or functionality can be
added to it with little or no modification to existing code.

extent (of a class) the set of objects for a class.

feature an attribute or an operation.

final (for a Java class) a directive that prevents further subclassing.

final (for a Java method) a directive that prevents the method from being overridden.
fire to cause a transition to occur.

focus of control the period of time for an object’s execution. The UML notation is a thin
rectangle. (Synonymous with activation.)

foreign key (in a relational database) a reference to a candidate key (normally a reference
to a primary key). It is the glue that binds tables.

forward engineering the building of an application from general requirements through to
an eventual implementation. (Contrast with reverse engineering.)

fourth-generation language a framework for straightforward database applications that
provides screen layout, simple calculations, and reports.

framework a skeletal structure of a program that must be elaborated to build a complete
application.

friend (in C++) a declaration that permits selective access to members. The class containing
the friend declaration grants access to a named function, method, or class.

garbage collection (in a programming language) a mechanism for automatically deallo-
cating data structures that can no longer be accessed and are therefore not needed.

generalization an organization of elements (such as classes, signals, or use cases) by their
similarities and differences. The UML notation is a triangle with the apex next to the
superelement. (Contrast with specialization.)

generalization set name an enumerated attribute that indicates which aspect of an object is
being abstracted by a particular generalization.

432 Appendix B / Glossary

guard condition a boolean expression that must be true in order for a transition to occur. A
guard condition is checked only once, at the time the event occurs, and the transition
fires if the condition is true. The UML notation is to list a guard condition in square
brackets after an event.

identifier one or more attributes in an implementation that unambiguously differentiate an
object from all others.

identity the inherent property of an object which distinguishes each object from all others.

implementation the development stage for translating a design into programming code and
database structures.

implementation inheritance an abuse of inheritance that seeks to reuse existing code, but
does so with an illogical application structure that can compromise future maintenance.

implementation method (style) a method that implements specific computations on fully
specified arguments, but does not make context-dependent decisions. (Contrast with
policy method.)

implementation modeling the development stage for adding fine details to a model that
transcend languages. Implementation modeling is the immediate precursor to the actual
implementation.

include (use case relationship) a relationship that incorporates one use case within the
behavior sequence of another use case. The UML notation is a dashed arrow from the
source (including) use case to the target (included) use case. The keyword «include»
annotates the arrow. (Contrast with exclude.)

index a data structure that maps one or more attribute values into the objects or database
table rows that hold the values. Indexes are used for optimization (to quickly locate
objects and table rows) and to enforce uniqueness.

information hiding (see encapsulation)
inheritance the mechanism that implements the generalization relationship.

integration testing testing of code from multiple developers to determine how the classes
and methods fit together. (Contrast with unit resting and system testing.)

interaction model the model that describes how objects collaborate to achieve results. It is
a holistic view of behavior across many objects, whereas the state model is a reductionist
view of behavior that examines each object individually.

interactive interface (architectural style) a system that is dominated by interactions
between the system and agents, such as humans, devices, or other programs.

interface (in Java) an uninstantiable class specification the contains only constants and
method declarations.

iterative development the development of a system by a process broken into a series of
steps, or iterations, each of which provides a better approximation to the desired system
than the previous iteration. (Contrast with rapid prototyping and waterfall
development.)

Appendix B / Glossary 433

iterator (in a programming language) a construct that controls iteration over a range of
values or a collection of objects.

layer a subsystem that provides multiple services, all of which are at the same level of
abstraction. A layer can be built on subsystems at a lower level of abstraction. (Contrast
with partition.)

leaf class a class with no subclasses. It must be a concrete class. In Java, this is the same as
a final class.

library a collection of classes that are reusable across applications.
life cycle (see development life cycle).
lifeline the period of time during which an object exists.

link a physical or conceptual connection among objects. A link is an instance of an associ-
ation. The UML notation is a line between objects that may consist of several line
segments.

lock a logical object associated with some defined subset of a resource that gives the lock
holder the right to access the resource directly.

member (in C++) data or methods of a class.
metaclass a class describing other classes.
metadata data that describes other data.

method the implementation of an operation for a class. The UML notation lists methods in
the third compartment of the class box. (Contrast with operation.)

method caching (in a programming language) an optimization of method searching in
which the address of a method is found the first time an operation is applied to an object
of a class and then stored in a table attached to the class.

method resolution (in a programming language) the process of matching an operation on
an object to the method appropriate to the object’s class.

methodology (in software engineering) a process for the organized production of software
using a collection of predefined techniques and notational conventions.

model an abstraction of some aspect of a problem. We express models with various kinds
of diagrams.

modularity the organization of a system into groups of closely related objects.

multiple inheritance a type of inheritance that permits a class to have more than one super-
class and to inherit features from all ancestors. (Contrast with single inheritance.)

multiplicity (of an association end) the number of instances of one class that may relate to
a single instance of an associated class. Multiplicity is a constraint on the size of a
collection. The UML notation is a numeric interval or the special symbol “*” denoting
“many” (zero or more). (Contrast with cardinality.)

434 Appendix B / Glossary

multiplicity (of an attribute) the possible number of values for each instantiation of an
attribute. The most common specifications ar a mandatory single value [1], an optional
single value {0..1], and many [*].

namespace (in C++) a means for providing a semantic scope for symbols to alleviate name
conflicts.

n-ary association an association involving three or more association ends. The UML
symbol is a diamond with lines connecting to the related classes. If the association has
a name, it is written in italics next to the diamond.

navigability the direction of traversal of a binary association in an implementation. The
possibilities are none, either direction, or both directions. The UML shows navigability
with an arrowhead on the association end attached to the target class.

navigation atraversal of associations and generalizations in a class model to go from source
objects to target objects.

nested state a state that shares behavior from its composite state and adds additional
behavior of its own. (Contrast with composite state.)

new (in C++ and Java) the operator to create objects.

normal form (in a relational database) a guideline for relational database design that
increases data consistency.

n-tier architecture an extension of the three-tier architecture, permitting any number of
application layers. (Contrast with three-tier architecture.)

null a special value denoting that an attribute value is unknown or not applicable.

object a concept, abstraction, or thing that can be individually identified and has meaning
for an application. An object is an instance of a class.

Object Constraint Language (OCL) a language for defining constraints that is part of the
UML. You can also use the OCL to navigate class models.

object diagram a graphical representation that shows individual objects and their relation-
ships. (Contrast with class diagram.)

object identity (in a relational database) the use of an artificial number to identify each
record in a table. (Contrast with value-based identity.)

Object Management Group (OMG) a standards forum that is the owner of the UML.

object-orientation (OO) a strategy for organizing systems as collections of interacting
objects that combine data and behavior.

OCL (acronym) Object Constraint Language.
OMG (acronym) Object Management Group.
0O (acronym) object-oriented.

OO database a database that is perceived as objects that mix data and behavior. (Contrast
with relational database.)

Appendix B / Glossary 435

00-DBMS a DBMS that provides persistent objects in addition to the transient objects
provided by OO programming languages. (Contrast with relational DBMS.)

0O development a software development technique that uses objects as a basis for the
construction of software.

OO programming language a language that supports objects (combining identity, data,
and operations), method resolution, and inheritance.

operation a function or procedure that may be applied to or by objects in a class. (Contrast
with method.)

ordered a sorted collection of elements with no duplicates allowed. The UML notation is
to annotate an association end with {ordered}. (Contrast with sequence.)

origin class the topmost class in an inheritance hierarchy that defines a feature.

overloading (in a programming language) binding the same name to multiple methods
whose signatures differ in number or types of arguments. A call to an overloaded oper-
ation is resolved at compile time based on the types of the calling arguments.

override to define a method for an operation that replaces an inherited method for the same
operation.

package (class modeling construct) a group of elements (classes, associations, generaliza-
tions, and lesser packages) with a common theme. The UML notation is a box with a
tab; the package name is placed in the box.

package (referring to visibility) accessible by methods of classes in the same package as the
containing class.

partition a subsystem that provides a particular kind of service in parallel to other
subsystems. A partition may itself be built from lower-level subsystems. (Contrast with
layer.)

passive object an object that does not have its own thread of control. (Contrast with active
object.)

pattern a parameterized excerpt of a model that is important and recurring. It is mathemat-
ical in nature and worthy of reuse across multiple applications.

peer two or more subsystems that are mutually interdependent for services. (Contrast with
client and server.)

persistent object an object that is stored in a database and can span multiple application
executions. (Contrast with transient object.)

policy method (style) a method that makes context-dependent decisions but calls on imple-
mentation methods for detailed computations. (Contrast with implementation method.)

polymorphism takes on many forms; the property that an operation may behave differently
on different classes.

436 Appendix B / Glossary

primary Key (in a relational database) a candidate key that is preferentially used to access
the records in a table. A table can have at most one primary key; normally each table
should have a primary key.

private (referring to visibility) accessible by methods of the containing class only.

procedure-driven control an approach in which control resides within the program code.
Procedures request external input and then wait for it; when input arrives, control
resumes within the procedure that made the call. The location of the program counter
and the stack of procedure calls and local variables define the system state. (Contrast
with event-driven control.)

programming-in-the-large the creation of large, complex programs with teams of
programmers.

protected (referring to C++ visibility) accessible by methods of the containing class and
any of its descendant classes.

protected (referring to Java visibility) accessible by methods of the containing class, any of
its descendant classes, and classes in the same package as the containing class.

public (referring to visibility) accessible by methods of any class.

qualified association an association in which one or more attributes (called qualifiers)
disambiguate the objects for a “many” association end. The UML notation is a small box
on the end of the association line near the source class.

qualifier an attribute that distinguishes among the objects at a “many” association end. The
UML notation is to place a qualifier in a small box on the end of the association line near
the source class.

raee condition a <itustion in which the order of receiving concurrent signals can affect the
{inal state of an object.

rapid prototyping the quick development of a portion of a system for experimentation and
evaluation. Prototyping is proof of concept and often throwaway by intent. (Contrast
with iterative development and waterfall development.)

real-time system (architectural style) an interactive system for which time constraints on
actions are particularly tight or in which the slightest timing failure cannot be tolerated.

refactoring changes to the internal structure of software to improve its design without
altering its external functionality.

reference an attribute value in one object that refers to another object.

reflection a property of a system such that it can examine its own structure dynamically and
reason about its own state.

region a portion of a state diagram.
reification the promotion of something that is not an object into an object.

relational database a database in which the data are perceived as tables. (Contrast with OO
database.)

Appendix B / Glossary 437

relational DBMS a DBMS that manages tables of data and associated structures that
increase the functionality and performance of tables. (Contrast with O0-DBMS.)

responsibility something that an object knows or something it must do. A responsibility is
not a precise concept; it is meant to get the thought process going.

reverse engineering the process of examining implementation artifacts and inferring the
underlying logical intent. (Contrast with forward engineering.)

robust a property of software such that it does not fail catastrophically when some of its
design assumptions are violated.

scenario a sequence of events that occur during one particular execution of a system.
schema the structure of the data in a database.

scope an indication if a feature applies to an object or a class. An underline distinguishes
features with class scope (static) from those with object scope.

sequence a sorted collection of elements with duplicates allowed. The UML notation is to
annotate an association end with {sequence}. (Contrast with ordered.)

sequence diagram a diagram that shows the participants in an interaction and the sequence
of messages among them.

server a subsystem that provides a service to other subsystems. (Contrast with client.)
service a group of related functions or operations that share some common purpose.

shopping-list operation an operation that is meaningful in its own right. Bertrand Meyer
coined the term shopping list because discovery of such an operation is driven by the
intrinsic meaning of a class and not by the needs of a particular application. Sometimes
the real-world behavior of classes suggests operations.

signal an explicit one-way transmission of information from one object to another. The
UML notation is the keyword «signal» above the signal class name in the top section of
a box. The second section lists the signal attributes.

signal event the event of sending or receiving a signal.
signature the number and types of the arguments for an operation and the type of its result.

single inheritance a type of inheritance in which a class may have only a single superclass.
(Contrast with multiple inheritance.)

software engineering a systematic, disciplined, and quantifiable approach to the develop-
ment, operation, and maintenance of software.

specialization the refinement of a class into variants. Specialization has the same meaning
as generalization but takes a top-down perspective. In contrast, generalization takes a
bottom-up perspective. (Contrast with generalization.)

SQL the standard language for interacting with a relational database.

state an abstraction of the values and links of an object. The UML notation is a rounded box
containing an optional state name. (Contrast with event.)

438 Appendix B / Glossary

state diagram a graph whose nodes are states and whose directed arcs are transitions
between states.

state model a description of those aspects of a system concerned with time and the
sequencing of operations. The state model consists of multiple state diagrams, one state
diagram for each class with important temporal behavior.

static (in C++ and Java) data and methods that belong not to an instance of a class, but to
the class itself.

stored procedure (in a relational database) a method that is stored in a database.

strong typing (in a programming language) a requirement that the type of each variable
must be declared. (Contrast with weak ryping.)

subclass a class that adds specific attributes, operations, state diagrams, and associations for
a generalization. (Contrast with superclass.)

submachine a state diagram that may be invoked as part of another state diagram. The UML
notation for invoking a submachine is to list a local state name followed by a colon and
the submachine name.

substate a state that expresses an aspect of concurrent behavior for a parent state.

subsystem a major piece of a system that is organized around some coherent theme. A
system may be divided into subsystems using either partitions or layers.

superclass the class that holds common attributes, operations, state diagrams, and associa-
tions for a generalization. (Contrast with subclass.)

swimlane a column in an activity diagram that shows the person or organization who
performs activities; a partition.

system an application that is the subject of interest.
system architecture (see architecture).

system boundary the outline of the scope of a system determining what the system includes
and what the system omits.

system conception the development stage that deals with the genesis of an application.

system design the development stage during which the developer devises the architecture
and establishes general design policies.

system testing the checking of an entire application. (Contrast with unit testing and integra-
tion testing.)

table (in arelational database) an organization of data that has a specific number of columns
and an arbitrary number of rows.

ternary association an association among three association ends. The UML symbol is a
diamond with lines connecting to the related classes. If the association has a name, it is
written in italics next to the diamond.

this (in C++ and Java) the default name of the target object of a method.

Appendix B / Glossary 439

thread of control a single path of execution through a program, a state model, or some
other representation of control flow.

three-tier architecture an approach that separates data management, application function-
ality, and the user interface. The data management layer holds the database schema and
data. The application layer holds the methods that embody the application logic. The
user-interface layer manages the forms and reports that are presented to the user.
(Contrast with n-tier architecture.)

time event an event caused by the occurrence of an absolute time or the elapse of a time
interval. The UML notation for an absolute time is the keyword when followed by a
parenthesized expression involving time. The notation for a time interval is the keyword
after followed by a parenthesized expression that evaluates to a time duration.

transaction manager (architectural style) a database system whose main function is to
store and access information.

transient object an object that exists only in memory and disappears when an application
terminates execution. Thus a transient object is an ordinary programming object.
(Contrast with persistent object.)

transition an instantaneous change from one state to another. The UML notation is a line
(with possibly multiple line segments) from the origin state to the target state; an arrow-
head points to the target state.

transitive closure (from graph theory) the set of nodes that are reachable by some sequence
of edges.

UML (acronym, trademark of the OMG) Unified Modeling Language.

Unified Modeling Language (trademark of the OMG) a comprehensive suite of object-
oriented models intended to represent software and other kinds of applications fully. The
UML has been developed under the auspices of the OMG.

UML1 informal term for the first release of the UML approved in 1997.

UML2 informal term for the second release of the UML approved in 2004. This book is
based on UML2.

unit testing testing by developers of their own code for classes and methods. (Contrast with
integration testing and system testing.)

use case a coherent piece of functionality that a system can provide by interacting with
actors. The UML notation is an ellipse with the use case name inside.

use case diagram a graphical notation for summarizing actors and use cases.

user interface an object or group of objects that provides the user of a system with a
coherent way to access its domain objects, commands, and application options.

value a piece of data. A value is an instance of an attribute.

value-based identity (in a relational database) the use of some combination of real-world
attributes to identify each record in a table. (Contrast with existence-based identity.)

440 Appendix B / Glossary

view (in a relational database) a table that a relational DBMS dynamically computes.
virtual (in C++) an operation that can be overridden by a descendant class.

visibility the ability of a method to reference a feature from another class. The UML
denotes visibility with the following prefixes. The possibilities are public (“+7),
protected (“#7), private ("), and package (*~7).

waterfall development the development life cycle of performing the software development
stages in a rigid linear sequence with no backtracking. (Contrast with iterative develop-
ment and rapid prototyping.)

weak typing (in a programming language) the lack of a requirement that the type of each
variable be declared. (Contrast with strong typing.)

wrapper a collection of interfaces that allow access into a system.

Answers to Selected Exercises

We selected answers with the following criteria: exercises with short answers in the core chapters, ex-
ercises that extend chapters by introducing new material. key exercises in a series of questions. an-
swers that clarify subtle or difficult points, and prototypes for real problems. Most exercises have mul-
tiple correct answers. so use our answers only as a guide and not as a test of correctness.

1.5b.

1.8a.

Criminal investigations can use combinations of photographs, fingerprinting, blood-typing,
DNA analysis, and dental records to identify people, living and/or deceased. who are involved
in, or the subject of. a criminal investigation.

Telephone numbers are adequate for identifying almost any telephone in the world. In general
a telephone number consists of a country code plus a province. city, or area code, plus a local
number plus an optional extension number. Businesses may have their own telephone systems
with other conventions. Depending on the relative location of the telephone that you are call-
ing, parts of the number may be implied and can be left out, but extra access digits may be re-
quired to call outside the local region.

In North America most local calls require 7 digits. Long distance calls in North America

use an access digit (0 or 1) + area code (3 digits) + local number (7 digits). Dialing Paris re-
quires an access code (011) + country code (33) + city code (1) + local number (8 digits). The
access code is not part of the identifier.
One way that employees are given restricted, after-hours access to a company is through the
use of a special, electronically readable card. Of course, if an employee loses a card and does
not report it, someone who finds it could use it for unauthorized entry. Other approaches in-
clude a picture ID which requires inspection by a guard, fingerprint readers, and voice recog-
nition.

Electron microscopes, eyeglasses, telescopes, bomb sights, and binoculars are all devices that
enhance vision in some way. With the exception of the scanning electron microscope, all these
devices work by reflecting or refracting light. Eyeglasses and binoculars are designed for use
with two eyes; the rest of the objects on the list are designed for use with one eye. Telescopes,
bomb sights, and binoculars are used to view things far away. A microscope is used to magnify
something that is very small. Eyeglasses may enlarge or reduce, depending on whether the pre-

441

442

2.3a.

3.2

3.3a.

3.20

3.23

Selected Answers

scription is for a nearsighted or a farsighted person. Some other classes that could be included
in this list are optical microscopes, cameras, and magnifying glasses.

Pipes. check valves, faucets, filters, and pressure gauges are all plumbing supplies with certain
temperature and pressure ratings. Compatibility with various types of fluids is also a consider-
ation. Check valves and faucets may be used to control flow. With the exception of the pressure
gauge, all of the items listed have two ends and have a pressure-flow characteristic for a given
fluid. All of the items are passive. Some other classes include pumps, tanks, and connectors.

For a transatlantic cable, resistance to salt water is the main consideration. The cable must lie
unmaintained at the bottom of the ocean for a long time. Interaction of ocean life with the cable
and the effect of pressure and salinity on cable life must be considered. The ratio of strength/
weight is important to avoid breakage while the cable is being installed. Cost is an important
economic factor. Electrical parameters are important for power consumption and signal distor-
tion. ~

Weight is very important for wire that is to be used in the electrical system of an airplane, be-
cause it affects the total weight of the plane. Toughness of the insulation is important to resist
chafing due to vibration. Resistance of the insulation to fire is also important to avoid starting
or feeding electrical fires in flight.

Figure A3.2 shows a class diagram for polygons and points. The smallest number of points re-
quired to construct a polygon is three.

The multiplicity of the association depends on how points are identified. If a point is iden-
tified by its location, then points are shared and the association is many-to-many. On the other
hand, if each point belongs to exactly one polygon, then several points may have the same co-
ordinates. The next answer clarifies this distinction.

Polygon | ! 3. CPo;nt
{ordered} ;ng;d

Figure A3.2 Class diagram for polygon and points

Figure A3.3 shows objects and links for two triangles with a common side in which a point
belongs to exactly one polygon.

Figure A3.4 shows objects and links for two triangles with acommon side in which points may
be shared.

Graphs occur in many applications. Several variations of the model are possible, depending on
your viewpoint. Figure A3.23 accurately represents undirected graphs as described in the ex-
ercise. Although not quite as accurate, your answer could omit the class UndirectedGraph.

We have found it useful for some graph related queries to elevate the association between
vertices and edges to the status of a class as Figure A3.24 shows.

Figure A3.27 shows a class diagram describing directed graphs.The distinction between the
two ends of an edge is accomplished with a qualified association. Values of the qualifier end
are from and to.

Figure A3.28 shows another representation of directed graphs. The distinction between the
two ends of an edge is accomplished with separate associations.

Selected Answers

Figure A3.3 Object diagram where each point belongs to exactly one polygon

:Point
xCoord=0
yCoord=1
:Point ‘ :Point
xCoord=-1 :Polygon xCoord=1
yCoord=0 yCoord=0
:Point :Polygon :Point
xCoord=-1 xCoord=1
yCoord=0 ‘ yCoord=0
:Point
xCoord=0
yCoord=-1

:Point

xCoord=-1
yCoord=0

:Point

xCoord=0
yCoord=1

J

:Polygon

:Polygon

Figure A3.4 Object diagram where each point can belong to multiple polygons

:Point

l

:Point

xCoord=0
yCoord=-1

xCoord=1
yCoord=0

UndirectedGraph

« 1

Vertex

T

vertexName

2

Edge
£ 3

edgeName

Figure A3.23 Class diagram for undirected graphs

443

444

3.25

3.28

331

Selected Answers

UndirectedGraph

* *
Vertex -1 Incidence Edge
)
vertexName | ' - : edgeName

Figure A3.24 Class diagram for undirected graphs in which the incidence between
vertices and edges is treated as a class

1 DirectedGraph 1

s
Edge " | Vertex
edgeName | ©Nd vertexName

Figure A3.27 Class diagram for directed graphs using a qualified association

DirectedGraph
1 1
* from *
Edge ® ! Vertex
edgeName | * I | vertexName

to

Figure A3.28 Class diagram for directed graphs using two associations

The advantage of the qualified association is that only one association must be queried to
find one or both vertices that a given edge is connected to. If the qualifier is not specified, both
vertices can be found. By specifying from or to for the end qualifier, you can find the vertex
connected to an edge at the given end.

The advantage of using two separate associations is that you eliminate the need to manage
enumerated values for the qualifier end.

Figure A3.30 shows a class diagram for car loans in which pointers are replaced with associa-
tions.

In this form, the arguably artificial restriction that a person have no more than three em-
ployers has been eliminated. Note that in this model an owner can own several cars. A car can
have several loans against it. Banks loan money to persons, companies, and other banks.

Figure A3.34 shows a class diagram for the dining philosophers problem. The one-to-one as-
sociations describe the relative locations of philosophers and forks. The InUse association de-
scribes who is using forks. Other representations are possible, depending on your viewpoint.
An object diagram may help you better understand this problem.

The following OCL expression computes the set of airlines that a person flew in a given year.

Selected Answers 445

3.34

4.2

4.4

Owns
Owner 1
name Borrows *
| Car
ﬁl model
k
|] } — Loan year
1
Person Company | | Bank accountNumber | . ;
‘ I Lends *| interestRate Lien
birthdate * currentBalance
address | *
Employment

Figure A3.30 Proper class diagram for car loans

rightDiner | 4 1 l leftFork

) 0..1 0.2
Philosopher InUse Fork
forkUser

leftDiner | 1 1 | rightFork

Figure A3.34 Class diagram for the dining philosopher problem

aPassenger .Flight->SELECT (getYear (date)=aGivenYear) .
Airline.name->asSet
The OCL asSet operator eliminates redundant copies of the same airline.

Figure E3.13 (a) states that a subscription has derived identity. Figure E3.13 (b) gives subscrip-
tions more prominence and promotes subscription to a class.

The (b) model is a better model. Most copies of magazines have subscription codes on their
mailing labels; this could be stored as an attribute. The subscription code is intended to identify
subscriptions; subscriptions are not identified by the combination of a person and a magazine,
so we should promote Subscription to a class. Furthermore, a person might have multiple sub-
scriptions to a magazine; only the (b) model can readily accommodate this.

The class diagram in Figure A4.2 generalizes the classes Selection, Buffer, and Sheet into the
superclass Collection. This is a desirable revision. The generalization promotes code reuse, be-
cause many operations apply equally well to the subclasses. Six aggregation relationships in
the original diagram, which shared similar characteristics, have been reduced to two. Finally,
the structure of the diagram now captures the constraint that each Box and Line should belong
to exactly one Buffer, Selection, or Sheet.

Figure A4.3 shows a class diagram for a graphical document editor. The requirement that a
Group contain 2 or more DrawingObjects is expressed as a multiplicity of 2..* on DrawingOb-
Ject in its aggregation with Group. The fact that a DrawingObject need not be in a Group is
expressed by the zero-one multiplicity.

It is possible to revise this diagram to make a Circle a special case of an Ellipse and to make
a Square a special case of a Rectangle.

446

Selected Answers

Box — < Collection >— Line @ —— LineSegment <>—— Point

T

l l I

Selection Buffer Sheet

Figure A4.2 Generalization of the classes Selection, Buffer, and Sheet into the class Collection

4.5

4.6

4.7

4.10

4.11

Document @——| Sheet

.

DrawingObject

7N

Text GeometricObject Group

T

| [1] |

Circle Ellipse Rectangle Line Square

Figure A4.3 Class diagram for a graphical document editor that supports grouping

We presume that a DrawingObject belongs to a Sheet and has a coincident lifetime with it.
Similarly, we presume that a Sheet belongs to one Document for its lifetime. Hence both are
composition relationships.

Figure A4.4 shows a class diagram with several classes of electrical machines. We have in-
cluded attributes that were not requested.

Figure A4.5 converts the overlapping combination of classes into a class of its own to eliminate
multiple inheritance.

Figure A4.6 is a metamodel of the following UML concepts: class, attribute, association, as-
sociation end, multiplicity, class name, and attribute name.

The class diagram in Figure E4.3 does support muitiple inheritance. A class may have multiple
generalization roles of subclass participating in a variety of generalizations.

To find the superclass of a generalization using Figure E4.3, first query the association be-
tween Generalization and GeneralizationRole to get a set of all roles of the given instance of
Generalization. Then sequentially search this set of instances of GeneralizationRole to find the
one with roleType equal to superclass. (Hopefully only one instance will be found with role-

Selected Answers 447

ElectricalMachine

voltage
horsepower
efficiency
numberOfPoles

{overlapping} - — f _____ R(- -

AC DC
frequency

T

I I [|

SynchronousMotor || InductionMotor || UniversalMotor || PermanentMagnetMotor

ratedFieldVoltage ratedSpeed
synchronousSpeed

Figure A4.4 Partial taxonomy for electrical machines

ElectricalMachine

voltage
horsepower
efficiency
numberOfPoles

T

[i [
AC ACDC DC

frequency

ﬁx

[I

SynchronousMotor || InductionMotor || UniversalMotor | | PermanentMagnetMotor

ratedFieldVoltage ratedSpeed
synchronousSpeed

Figure A4.5 Elimination of multiple inheritance

Type equal to superclass, which is a constraint that the model does not enforce.) Finally, scan
the association between GeneralizationRole and Class to get the superclass.

Figure A4.9 shows one possible revision which simplifies superclass lookup. To find the
superclass of a generalization, first query the association between Generalization and Super-

classRole. Then query the association between SuperclussRole and Class to find the corre-
sponding instance of Class.

448 Selected Answers

0.1 *
Association] - AssociationEnd - 1 Class T E Attribute
multiplicity className | attributeName

Figure A4.6 Metamodel for some UML concepts

GeneralizationRole

T

I |

SuperclassRole SubclassRole

1 & £
I 1 1

Generalization Class

generalizSetName className
[1

Figure A4.9 Metamodel of generalizations with separate subclass and superclass roles

Figure A4.10 shows another metamode! of generalization that supports multiple inherit-
ance. To find the superclass of a generalization using this metamodel, simply query the Super-
class association.

* 1
Generalization superclass Class
generalizSetName subclass| className
* *

Figure A4.10 Simplified metamoglel of generalization relationships

We do not imply that the metamodel in Figure A4.10 is the best model of generalization,
only that it simplifies the query given in the exercise. The choice of which model is best de-
pends on the purpose of the metamodel.

The following query finds the superclass, given a generalization for Figure E4.3.

B aGeneralization.GeneralizationRole->SELECT(roleType="‘superclass’).Class

The following query finds the superclass, given a generalization for Figure A4.9.

B aGeneralization.SuperclassRole.Class

The following query finds the superclass, given a generalization for Figure A4.10.
B aGeneralization.superclass

4.16 The simple class model in Figure A4.14 is sufficient for describing the given recipe data.

Selected Answers

449

Recipe #* bas‘elngredient * Ingredient
recipeName i ingredientName
* gﬂigﬂgumts output [0.1 input ’1‘
comment * * quantity
% Task quantityUnits
{ordered} | taskDescription

4.17

Figure A4.14 A simple class model for recipes

Figure A4.15 shows our initial solution to the exercise—nerely adding an association that

binds original ingredients to substitute ingredients. This model has two flaws.

The first problem is that the model awkwardly handles interchangeable ingredients. For ex-
ample, in some recipes you can treely substitute butter, margarine, and shortening for each oth-
er. Figure A4.15 would require that we store each possible pair of ingredients. Thus we would
have the following combinations of original and substitute ingredients—(butter, margarine),
(butter, shortening). (margarine. butter). (margarine, shortening), (shortening, butter), and
(shortening, margarine).

The second problem is that the substitutability of ingredients does not always hold, but can
depend on the particular recipe.

Figure A4.16 shows a better class model that remedies both flaws.

“Recipe *

baselngredient *

Ingredient

1
I

Initial
inferior

recipeName

* originallngredient

&

quantity——_|

quantityUnits

ingredieW

07T input

* *

out

** substituteingredient

solution

comme

*

Task

/

{ordered}

taskDescription

quantity

\untityUnits

Figure A4.15 Initial class model for recipes with alternate ingredients

Recipe

baselngredient
*

Ingredient

recipeName

*

Correct
solution

T
1
L

quantity
quantityUnits
comment

*

*
o

ingredientName

output | 0..1 input

EquivalenceSet

#

*

* |

quantity

Task

quantityUnits

{ordered}

*| taskDescription

Figure A4.16 Correct class model for recipes with alternate ingredients

450 Selected Answers

5.2 In Figure A5.2 the event A refers to pressing the A button. In this diagram, releasing the button
is unimportant and is not shown (although you must obviously release the button before you
can press it again). Note that a new button event cannot be generated while any button is
pressed. You can consider this a constraint on the input events themselves and need not show
it in the state diagram (although it would not be wrong to do so).

DigitalWatch |

Display time

do /show hours
and minutes

Set minutes
do /show minutes

Set hours
do / show hours

B/ advance hour B/ advance minute

Figure A5.2 State diagram for a simple digital watch

5.6 Figure A5.6 shows the completed state diagram for the motor control.

MotorControl |)
on is no longer asserted

do/ appl?t::vlv';? to rD motor is running Running

ot do / apply power
winding and apply g
power to start winding \Jo run windin

on is asserted

motor is overheated
on is no longer asserted motor is overheated Yo

reset[motor is not overheated]

Figure AS5.6 State diagram for a motor control

5.11 Figure A5.11 shows the state diagram. Note that even simple state diagrams can lead to com-
plex behavior. A change event occurs whenever the candle is taken out of its holder or when-
ever it is put back. The condition at north is satisfied whenever the bookcase is behind the wall.
The condition at north, east, south, or west is satisfied whenever the bookcase is facing front,
back, or to the side.

When you first discovered the bookcase, it was in the Stopped state pointing south. When
your friend removed the candle, a change event drove the bookcase into the Rotating state.
When the bookcase was pointing north, the condition at north put the bookcase back into the
Stopped state. When your friend reinserted the candle, another change event put the bookcase
into the Rotating state until it again pointed north. Pulling the candle out generated another
change event and would have caused the bookcase to rotate a full turn if you had not blocked
it with your body. Forcing the bookcase back is outside the scope of the control and does not
have to be explained.

Selected Answers 451

BookcaseControl)

[at north, east, south, or west]

Rotating change

do / rotate bookcase

Stopping
do /rotate bookcase

[at north]

6.1

Figure AS.11 State diagram for bookcase control

When you put the candle back again, another change event was generated, putting the book-
case into the Rotating state once again. Taking the candle back out resulted in yet another
change event, putting the bookcase into the Stopping state. After 1/4 turn, the condition at
north, east, south or west was satisfied, putting the bookcase into the Stopped state.

What you should have done at first to gain entry was to take the candle out and quickly put
it back before the bookcase completed 1/4 turn.

The headlight (Figure A6.1) and wheels (Figure A6.2) each have their own state diagram. Note
that the stationary state for a wheel includes several substates.

We have shown default initial states for the headlight and wheels. The actual initial state of
the wheels may be arbitrary and could be any one of the power off states. The system operates
in a loop and does not depend on the initial state, so you need not specify it. Many hardware
systems have indeterminate initial states.

TrainHeadlight J power off

power on

Figure A6.1 State diagram for a toy train headlight

TrainWheels J
.\ power on power off

Stationary
power off power on

¢

power on <_{power off
power off Reverse power on

Figure A6.2 State diagram for the wheels of a toy train

452

6.3

Selected Answers

Figure A6.4 adds Motor On to capture the commonality of the starting and running state. We

have shown a transition from the Off state to the Starting state. We could instead have shown
a transition from Off to Motor On and made Starting the initial state of Motor On. Note that the
activity apply power to run winding has been factored out of both starting and running states.

MotorControl

on is no longer asserted

Motor On
do / apply power to run winding

Starting motor is running

on is asserted
(o)

reset[motor is not overheated] ~ motor is overheated ‘

do / apply power to { Running)
_ start winding j

Too Hot
NG

Figure A6.4 State diagram for a motor control using nested states

6.4

Figure A6.5 revises the motor state diagram. Note that a transition from Off to either Forward

or Reverse also causes an implicit transition to Starting, the default initial state of the lower
concurrent subdiagram. An off request causes a transition out of both concurrent subdiagrams

back to state Off.

MotorControl]

on |

forward request

Forward

reverse request

wo/ energize forward contact@

Reverse

off request

@/ energize reverse contacto>

Starting
entry / start timer

Running
do / energize running contactor,

_/

Figure A6.5 Revised state diagram for an induction motor control

Selected Answers

7.1

a.

Here are answers for a physical bookstore.
Some actors are:

B Customer. A person who initiates the purchase of an item.

B Cashier. An employee who is authorized to check out purchases at a cash register.

M Payment verifier. The remote system that approves use of a credit or debit card.

Some use cases are:

453

B Purchase items. A customer brings one or more items to the checkout register and pays for

the items.

B Return items. The customer brings back items that were previously purchased and gets a

refund.

Figure A7.1 shows a use case diagram.

Bookstore Checkout System
L i

——— purchase
~ items Customer
Payment verifier ~~_ %
Cashier

Figure A7.1 Use case diagram for a physical bookstore checkout system

d. Here is a normal scenario for each use case. There are many possible answers.

€.

W Purchase items.
Customer brings items to the counter.
Cashier scans each customer item.
Cashier totals order, including tax.
Cashier requests form of payment.
Customer gives a credit card.
Cashier scans card.
Verifier reports that credit card payment is acceptable.
Customer signs credit card slip.

B Return items.
Customer brings purchased item to the counter.
Customer has receipt from earlier purchase.
Cashier notes that payment was tn cash.
Cashier accepts items and gives customer a cash refund.

Here is an exception scenario for each use case. There are many possible answers.

B Purchase items.
Customer brings items to the counter.
Cashier scans each customer item.
An item misscans and cashier goes to item display to get the item price.

454

f.

B Return items.

Customer brings purchased item to the counter.
Customer has no receipt from earlier purchase.
Customer is given a credit slip, but no refund.

Selected Answers

Figure A7.2 shows a sequence diagram for the first scenario in (d). Figure A7.3 shows a se-
quence diagram for the second scenario in (d).

:Customer

:CheckoutSystem

bring items to counter

:Cashier

scan items

total order

request form of payment

give credit card

sign credit card slip

scan card

scan card

:Verifier

accept card

Figure A7.2 Sequence diagram for a purchase of items

:Customer

7.8
8.1

:CheckoutSystem

bring items to counter

:Cashier

give receipt

note cash payment

give cash

Figure A7.3 Sequence diagram for a return of items

Figure A7.12 shows an activity diagram for computing a restaurant bill.

Here are answers for an electronic gasoline pump.

Figure AS8.1 shows a use case diagram.

Selected Answers 455

total items

credit coupons and cenifica@

[less than six]

@tomer determines grat@ add 18%

Figure A7.12 Activity diagram for computing a restaurant bill

[six or more]

Electronic Gasoline Pump

purchase \ “ include» purchase
gas car wash

«extend» N \fextend»

Customer

pay credit

pay credit
card outside

card inside

Cashier

Figure A8.1 Use case diagram for an electronic gasoline pump

b. There are two actors:

B Customer. A person who initiates the purchase of gas.

M Cashier. A person who handles manual credit card payments and monitors the sale of gas.
c¢. There are four use cases:

B Purchase gas. Obtain gas from the electronic gas pump and pay for it with cash.

W Purchase car wash. A customer also decides to purchase a car wash and pays for it with
cash.

W Pay credit card outside. Instead of cash, pay for the gas and optional car wash with a credit
card that is directly handled by the gas system.

B Pay credit card inside. Instead of cash, pay for the gas and optional car wash with a credit
card that is manually handled by the cashier.

8.6 Figure A8.6 computes the contents of a portfolio of stocks.

456

12.9

Selected Answers

:StockMgmtSoftware :Portfolio :Transaction

l

>l l

computeContents (date)

getTransactions (endDate) |

stockContents := transactionSet
initialComposition + =~ — — — — — — —

sum(transactionSet)
< D ERT T

- —

L] i

Figure A8.6 Sequence diagram for computing the contents of a portfolio of stocks

Here is elaboration for an antilock braking system for an automobile.

An antilock braking system could target the mass market. If the antilock system was inexpen-
sive and safer than current technology. it could be government mandated and installed on all
cars. (Further study would be needed to determine what price is “inexpensive’ and what would
be a “significant” safety improvement.)

There would be several stakeholders. Auto customers would expect improved safety and
minimal detriment to drivability. Auto manufacturers would want to minimize the cost and
quantify the benefit so they could tout the technology in their advertising. The government
would be looking for a statistical safety improvement without compromising fuel efficiency.

If the new system was inexpensive, worked well, and did not hurt drivability, all car owners
could be potential customers. An expensive antilock system could be a premium option on
high-end cars.

. Desirable features would include: effective prevention of brake locking, ability to detect ex-

cessive brake wear. and acquisition of data to facilitate auto maintenance. Some undesirable
features would be: reduced fuel efficiency. reduced drivability, and greater maintenance com-
plexity. !

An antilock system must work with the brakes, steering, and automotive electronics.

. There would be a risk that an antilock braking system could fail, leading to an accident and a

lawsuit. Also it might be difficult to understand fully how the antilock system would interact
with the brakes.
The following tentative classes should be eliminated.

B Redundant classes. Child, Contestant, Individual, Person, Registrant (all are redundant
with Competitor).

B Vague or irrelevant classes. Back, Card, Conclusion, Corner, IndividualPrize, Leg, Pool,
Prize, TeamPrize, Try, WaterBallet.

W Attributes. address, age, averageScore, childName, date, difficultyFactor, netScore, raw-
Score, score, teamName.

B Implementation constructs. fileOfTeamMemberData. listOfScheduledMeets, group, num-
ber.

B Derived class. ageCategory is readily computed from a competitor’s age.

B Operations. computeAverage, register.

Selected Answers 457

B Out of scope. routine.

After eliminating improper classes we are left with Competitor, Event, Figure, Judge, League,
Meet, Scorekeeper, Season, Station, Team, and Trial.

12.12 We use a combination of the OCL and pseudocode to express our queries.

[Some of our answers to these problems traverse a series of links. Chapter 15 explains that
each class should have limited knowledge of a class model and that operations for a class
should not traverse associations that are not directly connected to it. We have violated this prin-
ciple here to simplify our answers. A more robust answer would define intermediate operations
to avoid these lengthy traversals.]

a.Find all the members of a given team.

Team: :retrieveTeamMembers ()
returns set of competitors
return self.competitor;
c.Find the net score of a competitor for a given figure at a given meet. There are several ways to
answer this question, one of which is listed below.

Competitor::findNetScore (figure, meet)
returns netScore

event:= meet.event intersect figure.event;
/* the above code should return exactly one */
/* event (otherwise there is an implementation */
/* error). This is a constraint implicit in the */
/* problem statement that is not expressed in */
/* the class model. */

trial := event.trial intersect self.trial;

if trial == NIL then return ERROR

else return trial.netScore;

end if

e.Find the average score of a competitor over all figures in a given meet.

Competitor::findAverage (meet) returns averageScore
trials:= meet.event.trial intersect
self . trial;
if trials == NIL then return ERROR
else
compute average as in answer (d)
return average;
end if

g.Find the set of all individuals who competed in any events in a given season.
Season: : findCompetitorsForAnyEvent ()

returns set of competitors
return self .meet.event.trial.competitor;

12.14 The revised diagrams are shown in Figure A12.7-Figure A12.10. Figure A12.7 is a better mod-
el than the ternary because dateTime is really an attribute. Figure A12.8 is also better than the
ternary because UniversityClass is likely to be a class with attributes, operations, and other re-
lationships. The third ternary is not atomic because the combination of a Seat and a Concert
determine the Person. The fourth ternary also is not atomic; this one can be restated as two bi-
nary associations.

13.14 The application manages data for competitive meets in a swimming league. The system stores
swimming scores that judges award and computes various summary statistics.

13.15 Actors are competitor, scorekeeper, judge, and team.

458

Doctor

Appointment

Selected Answers

dateTime

Patient

Figure A12.7 Class diagram for appointments

Student

UniversityClass

*
1

Professor

University

Figure A12.8 Class diagram for university classes

Seat

; Concert

Figure A12.9 Class diagram for reservations

0.1

Person

Edge

* To 1

* From |1

Vertex

Figure A12.10 Class diagram for directed graphs

13.16 Here are definitions for the use cases. Figure A13.12 shows a use case diagram.

Register child. Add a new child to the scoring system and record the name, age, address,

and team name. Assign the child a number.

Schedule meet. Assign competitors to figures and determine their starting times. Assign

scorekeepers and judges to stations.

Schedule season. Determine the meets that comprise a season. For each meet, determine

the date, the figures that will be performed, and the competing teams.

Score figure. A scorekeeper observes a competitor’s performance of a figure and assigns

what he/she considers to be an appropriate raw score.

Judge figure. A judge receives the scorekeepers’ raw scores for a competitor’s perfor-

mance of a figure and determines the net score.

Selected Answers 459

13.21
14.6
14.7

Swimming league scoring system

register child

schedule meet

Team
\
schedule season f
/
N Scorekeeper
Competitor

judge figure -4
e Judge

Figure A13.12 Use case diagram for the swimming league scoring system

B Compute statistics. The system computes relevant summary information, such as top in-
dividual score for a figure and total team score for a meet.

Figure A13.14 shows a partial shopping list of operations.
Figure A14.1 shows one possible partitioning.

A single program provides faster detection and correction of errors and eliminates the need to
implement an interface between two programs. With a single program, any errors that the sys-
tem detects in the process of converting the class diagram to a database schema can be quickly
communicated to the user for correction. Also, the editing and the conversion portions of the
program can share the same data, eliminating the need for an interface such as a file to transfer
the class diagram from one program to another.

Splitting the functionality into two programs reduces memory requirements and decouples
program development. The total memory requirement of a single program would be approxi-
mately equal to the sum of the requirements of two separate programs. Since both programs
are likely to use a great deal of memory, performance problems could arise if they were com-
bined. Using two separate programs also simplifies program development. The two programs
can be developed independently, so that changes made in one are less likely to impact the oth-
er. Also, two programs are easier to debug than one monolithic program. If the interface be-
tween the two programs is well defined, problems in the overall system can be quickly identi-
fied within one program or the other.

Another advantage of splitting the system into two programs is greater ﬂex1b111ty The ed-
itor can be used with other back ends, such as generating language code declarations. The re-
lational database schema generator can be adapted to other graphical front ends.

14.10 Here is an evaluation of each solution.

a.Do not worry about it at all. Reset all data every time the system is turned on. This is the
cheapest, simplest approach. It is relatively easy to program, since all that is needed is an ini-

460 Selected Answers

Season " ¥ Meet . = Station — Scorekeeper
startingDate date location name
endingDate location
scheduleMeet registerCompetitor 1 *

scheduleEvent
1
: * *
League Figure ®
- - Event Judge
figureTitle ——
difficultyFactor ¥ startingTime name
: Y
description verifyCompetitors ”
% * 1
Team %
name Trial * :
computeMeetAverage 1 netScore v‘
computeSeasonAverage * * computeNetScore | | rawScore
Competitor *
name
age 1
address

telephoneNumber

printMeetScores
computeMeetAverage
computeSeasonAverage

Figure A13.14 Partial class diagram for a scoring system including operations

command processing

user interface construct expression file interface

lin mantic:
e semantics apply

) bstitut rationaliz luat save | load
operation | Substitute ionalize | evaluate

work work

line syntax

operating system

Figure A14.1 Block diagram for an interactive polynomial symbolic manipulation system

tialization routine on power-up to allow the user to enter parameters. However, this approach

cannot be taken for systems that must provide continuous service or that must not lose data dur-
ing power loss.

Selected Answers 461

¢.Keep critical information on a magnetic disk drive. Periodically make full and/or incre-
mental copies on magnetic tape. This approach is moderately expensive and bulky. In the
event of a power failure, the system stops running. An operating system is required to cope
with the disk and tape drive. An operator is required to manage the tapes, which would pre-
clude applications where unattended operation is required.

e.Use a special memory component. This approach is relatively cheap and is automatic. How-
ever, the system cannot run when power is off. Some restrictions may apply, such as a limit on
the number of times data can be saved or on the amount of data that can be saved. A program
may be required to save important parameters as power is failing.

14.11a.Four-function pocket calculator. Do not worry about permanent data storage at all. All of the
other options are too expensive to consider. This type of calculator sells for a few dollars and
is typically used to balance checkbooks. Memory requirements are on the order of 10 bytes.

System clock for a personal computer. Only a few bytes are required, but the clock must con-
tinue to run with the main power off. Battery backup is an inexpensive solution. Clock circuits
can be designed that will run for 5 years from a battery.

e. Digital control and thermal protection unit for a motor. On the order of 10 to 100 bytes are
needed. This application is sensitive to price. An uninterruptable power supply is too expen-
sive to consider. Tape and disk drives are too fragile for the harsh environment of the applica-
tion. Use a combination of switches, special memory components, and battery backup. Switch-
es are a good way to enter parameters, since an interface is required anyway. Special memory
components can store computed data. A battery can be used to continue operation with power
removed but presents a maintenance problem in this application. We would question the last
requirement, seeking alternatives such as assuming that the motor is hot when it is first turned
on or using a sensor to measure the temperature of the motor.

5

14.12a.A description of the diagram, ignoring tabs, spaces, and line feeds, is:

(DIAGRAM
(CLASS
(NAME “Polygon”))
(CLASS
(NAME “Point”)
(ATTRIBUTE “x”)
(ATTRIBUTE “vy”))
(ASSOCIATION
(END (NAME “Polygon”) ONE)
(END (NAME “Point”) MANY)))

14.13 The hardware approach is fastest, but incurs the cost of the hardware. The software approach
is cheapest and most flexible, but may not be fast enough. Use the software approach whenever
it is fast enough. General-purpose systems favor the software approach, because of its flexibil-
ity. Special-purpose systems can usually integrate the added circuitry with other hardware.

Actually, there is another approach, firmware, that may be used in hardware architectures.
Typically, in this approach a hardware controller calculates the CRC under the direction of a
microcoded program, which is stored in a permanent memory that is not visible externally. We
will count this approach as hardware.

a.Floppy disk controller. Use a hardware approach. Flexibility is not needed, since a floppy
disk controller is a special-purpose system. Speed is needed, because of the high data rate.

462 Selected Answers

¢.Memory board in the space shuttle. Use hardware to check memory. This is an example of
a specific application, where the function can probably be integrated with the circuitry in the
memory chips. The data rate is very high.

e. Validation of an account number. Use a software approach. The data rate is very low. (The
system handling the account number is probably running on a general-purpose computer.)

15.6 Figure A15.1 enforces a constraint that is missing in Figure E15.1: Each BoundingBox corre-
sponds to exactly one Ellipse or Rectangle. One measure of the quality of an class model is
how well its structure captures constraints.

We have also shown BoundingBox as a derived object, because it could be computable from
the parameters of the graphic figure and would not supply additional information.

GraphicsPrimitive 1 /BoundingBox

%

Ellipse Rectangle

r—

Figure A15.1 Revised class diagram for a bounding box

15.9 The derived association in Figure A15.3 supports direct traversal from Page to Line. Derived
entities have a trade-off—they speed execution of certain queries but incur an update cost to
keep the derived data consistent with changes in the base data. The Page_Line association is
the composition of the Page_Column and Column_Line associations.

1 I
Page *! Column *1 Line

1 *

/ Page_Line

Figure A15.3 A revised newspaper model that can directly determine the page for a line

15.13 The code listed below sketches out a solution. This code lacks internal assertions that would
normally be included to check for correctness. For example, error code should be included to
handle the case where the end is a subclass and the relationship is not generalization. In code
that interacts with users or external data sources, it is usually a good idea to add an error check
as an else clause for conditionals that “must be true.”

traceInheritancePath (classl, class2): Path

{
path := new Path;

// try to find a path from classl as descendant of class2
classx := classl;

while classx is not null do
add classx to front of path;
if classx = class2 then return path;
classx := classx.getSuperclass();

Selected Answers 463

// didn’t find a path from classl up to class2
// try to find a path from class2 as descendant of class 1
path.clear () ;
classx := class2;
while classx is not null do
add classx to front of path;
if classx = classl then return path;
classx := classx.getSuperclass();
// the two classes are not directly related
// return an empty path
path.clear () ;
return path;

Class::getSuperclass (): Class
{
for each end in self.connection do:
if the end is a Subclass then:

relationship := end.relationship;
if relationship is a Generalization then:
otherEnds := relationship.end;

for each otherEnd in otherEnds do:
if otherEnd is a Superclass then:
return otherEnd.class

return null;
}

15.16 Figure A15.5 shows the revised model. Political party membership is not an inherent property
of a voter but a changeable association. The revised model better represents voters with no par-
ty affiliation and permits changes in party membership. If voters could belong to more than
one party, then the multiplicity could easily be changed. Parties are instances, not subclasses,
of class PoliticalParty and need not be explicitly listed in the model; new parties can be added
without changing the model and attributes can be attached to parties.

member registeredin .
Voter ” o] PoliticalParty

Figure A15.5 A revised model that reifies political party

15.18 The left model in Figure A15.6 shows an index on points using a doubly qualified association.
The association is sorted first on the x qualifier and then on the y qualifier. Because the index
is an optimization, it contains redundant information also stored in the Point objects.

{sorted} Point {sorted} {sorted} | Point
Point X Point .
Collection | Y |1 = ’; Collection EI—O.J Strip | ¥ 5 ;
b T ’ - -
Doubly qualified association Singly qualified association

Figure A15.6 Models for sorted collections of points

464

17.2

Selected Answers

The right model shows the same diagram using singly qualified associations. We intro-
duced a dummy class Strip to represent all points having a given x-coordinate. The right model
would be easier to implement on most systems, because a data structure for a single sort key
is more likely to be available in a class library. The actual implementation could use B-trees,
linked lists, or arrays to represent the association.

The code listed below specifies search, add, and delete methods.

PointCollection: :search (region: Rectangle): Set of Point
{

make a new empty set of points;

scan the x values in the association until x 2 region.xmin;

while the x gualifier £ region.xmax do:

scan the y values for the x value until y 2 region.ymin;
while the y qualifier £ region.ymax do:
add (x,y) to the set of points;
advance to the next y value;
advance to the next x value;
return the set of points;

PointCollection::add (point: Point)

{
scan the x values in the association until x 2 point.Xx;
if x = point.x then
scan the y values for the x value until y 2 point.y
insert the point into the association at the current
location;
}
PointCollection::delete (point: Point)
{
scan the x values in the association until x 2 point.x;
if x = point.x then
scan the y values for the x value until y 2 point.y
if y = point.y then
for each collection point with the current x,y value
if collection point = point
then delete it and return
report point not found error and return
}

Note that the scan operation should be implemented by a binary search to achieve logarithmic
rather than linear times. A scan falls through to the next statement if it runs out of values.

An arrow indicates that the association is implemented in the given direction.

B Text <—> Box. The user can edit text and the box must resize, so there should be a pointer
from text to box. Text is allowed only in boxes, so we presume that a user may grab a box

and move it, causing the enclosed text to also move. So there should be a pointer from box
to text.

M Connection <-> Box. A box can be dragged and move its connections, so there must be
pointers from box to connections. Similarly, a link can be dragged and move its connections
to boxes, so there must also be a pointer from connection to box. There is no obvious or-
dering.

B Connection <—> Link. Same explanation as previous bullet.

Selected Answers 465

18.6a.

B Collection —> ordered Box. Given a collection, we must be able to find the boxes. There
does not seem to be a need to traverse the other way. There likely is an ordering of boxes,
regarding their foreground / background hierarchy for visibility.

B Collection —> ordered Link. Same explanation as previous bullet.

Here is Java code to implement a bidirectional, one-to-one association between classes A and
B, using a pointer (reference variable) in each class. Each class maintains its own association
end and calls on the associated class to maintain the other side. Each class contains an internal
attribute, _updatelnProgress, that breaks the potential infinite recursion. We show only the at-
tributes and methods needed to implement the association.

We demonstrate class A; class B would contain the same code, but classes A and B and ob-
Jects a and b would be substituted with B, A, b, and a, respectively. Thus the field private B b
would become private A a, and the method A.SerB(B newB) would become B.SetA(A newA).
Note that we have minimized error handling as well as omitted boolean or enumerated returns
and proper exception handling.

This code assumes the most rigid of access control. Classes are presumed to exist in sepa-
rate packages and so can access only each other's public elements .

// in Java
// class A with a one-to-one association to class B

import BPackage.*;

public class A {
private B b = null;
private boolean _updateInProgress = false;

// Check if A has a B
public boolean hasB () {
return b != null;

// Given an A, bind newB to it with a one-to-one association.
public void setB (B newB) {

if (newB == null) return; // don't "associate" to null;
// caller should call RemoveB instead!
if (_updateInProgress) return; // break mutual recursion
if (b == newB) return; // this A already bound to newB
if (newB.hasA()) return;
// newB must lack an association
if (hasB()) removeB() ;

// remove currentb, if any; only 1:1allowed

_updateInProgress = true;
newB.setA(this) ;

// request newB to update its end of association
b = newB; // update this end of association
_updateInProgress = false;

466

Selected Answers

// Remove the one B that may be associated.
// Note that a 1l-to-1 assoc does not need a remove argument.
public void removeB() {

if (hasB() == false) return; // no B to remove!
if (_updateInProgress) return; // break mutual recursion
_updatelInProgress = true;

b.removeA() ;

// request B to remove its end of association
b = null; // remove this end of association
_updateInProgress = false;

Y

Often, classes that mention one another in their interfaces are packaged together and may
therefore have more extensive and privileged knowledge of one another. In such cases, it may
reasonable for one side or another of an association to take responsibility for maintaining both
association ends. This can provide optimization, centralize update code, and avoid the need for
devices (see _updatelnProgress in code) to terminate recursion. However, it may imply an in-
creased level of code dependency among associated classes.

This is not necessarily “bad” or “disencapsulating.” A logical dependency already exists,
expressed in the interface(s). The ability to restrict operations to selected callers may result in
safer, more accurate, more encapsulated (from the public view) code, even as it exposes select-
ed internals to an associated class. Consider the case where the ability to trigger termination of
a link should be restricted to the linked object itself. In Java, the publicly available remove()
methods would instead be given default package access, and by packaging A and B together,
invocation of those methods would be reserved for call only across the link and not by those
outside the package.

Alternatively, A and B might selectively expose their pointers and allow one end of the as-
sociation to perform all update activities. We offer the essentials of such a C++ solution.

//in C++
class B; // forward declaration

class A {

friend class B; // or per function if B has been declared:
/7 friend void B::setA(A&);

// friend void B::removeA() ;
B* b;
void removeB(); // B can ask A to remove B; others cannot
public:

bool hasB () { return b != 0; }

Selected Answers 467

void setB (B& newB) ;
// or use pointer parameter to allow null b
Y

void A::setB(B& newB)

if (b == &newB) return; // this A already bound to newB
if (newB.hasA()) return; // newB must lack an association
if (hasB()) removeB();

// remove current b, if any; only 1:1 allowed

b = &newB; // update this end of association
b->a = this;

void A::removeB()

{
if ('hasB{()) return; // no B to remove!
if (b->a != this) return; // whoops -- not bidirectional!

b->a = 0; // remove o0ld b's pointer to this A
b = 0; // remove this end of association
}
19.13 We infer that a Route has 2 Cities from the problem statement. We could not deduce that from
the SQL code alone.

City 2 * | Route
cityName CityDistance | distance

Figure A19.12 Class model for Figure E19.6

19.14 SQL code to determine distance between two cities for Figure E19.6.

SELECT distance
FROM Route R, City C1l, City C2,
City Distance CD1, City_Distance CD2
WHERE Cl.city_ID = CDl.city_ID AND
CDl.route_ID = R.route_ID AND
R.route_ID = CD2.route_ID AND
CD2.city_ID = C2.city ID AND
Cl.city_name = :aCityNamel AND
C2.city_name = :aCityNameZ2;

19.15 Here is the class diagram.

19.16 SQL code to determine distance between two cities for Figure E19.7. We don’t know which
name is 1 and which name is 2, so the SQL code allows for either possibility.

468

19.17

20.3a.

Selected Answers

City
cityName J" distance

* CityDistance

Figure A19.13 Class model for Figure E19.7

SELECT distance
FROM City Cl, City C2, City_Distance CD
WHERE Cl.city_ID = CD.cityl ID AND
CD.city2_ID = C2.city_ID AND
((Cl.cityName :aCityNamel AND
C2.cityName :aCityName2) OR
(Cl.cityName :aCityName2 AND
C2.cityName :aCityNamel)) ;

nonn

We make the following observations about Figure A19.12 and Figure A19.13.

M Figure A19.12 has an additional table. Figure A19.12 could store multiple routes between
the same cities with different distances. Given the lack of explanation about route in the
problem statement (is it a series of roads with different distances or is it the distance by
air?), this may or may not be a drawback.

B Figure A19.13 is awkward because of the symmetry between city1 and city2. Either data
must be stored twice with waste of storage, update time, and possible consistency problems,
or special application logic must enforce an arbitrary constraint.

We need to know more about the requirements to choose between the models.

This is an example of poor programming style. The assumption that the arguments are legal
and the functions called are well behaved will cause trouble during program test and integra-
tion.

The following statements will cause the program to crash if the argument to strlen is zero:

rootLength = strlen(rootName) ;
suffixLength = strlen(suffix);

The following statement will assign zero to sheetName if the program runs out of memory,
causing a program crash during the call to strcpy later in the function:

sheetName = malloc(rootLength + suffixLength + 1);

The following statements will cause the program to crash if any of the arguments are zero:

sheetName strcpy (sheetName, rootName);
sheetName = strcat (sheetName, suffix);

If sheetType is invalid, the switch statement will fall through, leaving sheet without an assigned
value. Also, it is possible that the call to vertSheetNew or the call to horizSheetNew could re-
turn zero for some reason. Either condition would make it possible for the following statement
to crash:

sheet->name = sheetName;

Index

A

abstract class 69-70, 81, 163, 326
convention for 70
notation for 69
abstract operation 69, 326
notation for 70
abstract signal 114, 125, 163
abstract use case 149, 163
abstraction 16, 22, 76, 93, 199-200, 405, 415
exercise 212-213
access control 34]
in C++ 315, 322-325
in Java 317, 322-325
accidents of software 3
activation 152
active object 152
active value 283
activity 99-103, 141-143
entry 100-101, 103, 113
exit 100-101, 103, 113
notation for 99, 140, 142
activity diagram 140-144, 154-157, 223
notation for 140, 155, 156
practical tips 143-144
activity token 143
actor 131-132, 134-136
finding 217
notation for 134-135
Ada 288
aggregation 64, 6669, 163-164, 191

and concurrency 114-115
exercise 83, 84
implementing
for a programming language 310
for a relational database 354
notation for 67
vs. association 67
vs. composition 67-68
agile programming 311
algorithm, design of 274-278
allocation
of subsystems to processors 248-250
analysis 4, 167-169, 181-215, 216-239, 299
application analysis 168-169, 216239
building application class model 224227
building application interaction model 216-
224
building application state model 227-233
building domain class model 183-201
building domain interaction model 204
building domain state model 201-204
choosing packages 201
data dictionary 187
domain analysis 168, 181-215
finding associations 187-192
finding attributes 192-194
finding classes 183-186
iteration of 196-199, 204-206
shifting abstraction 199-200
testing access paths 196

469

470

using generalization 194-196
ancestor class 38
antisymmetry 66, 67
a-part-of. See aggregation
API 367
application model 4, 168-169
construction of 216-234
application programming interface. See API
architecture 5, 167, 169, 240, 244-246
canonical architectures 256262
association 27-36, 66
as a class 33-36
convention for 28
directionality 28
exercise 84
finding 187-192
implementing 306-310, 341
for a relational database 353-354, 360—
361
in C++ 329-331
in Java 329-331
importance of 28, 50
meaning of 30
n-ary 64-66, 81, 83, 189--190, 310
notation for 28
qualified 36, 45, 48, 64, 78, 191, 193, 310
ternary 64—66, 81, 83, 189-190
traversal of 31, 64, 65
vs. aggregation 67
association class 33-36, 78, 193-194
exercise 55, 59
implementing 310
for a relational database 353
in C++ 330
in Java 330
notation for 33
traversal of 45
vs. class 36
association end 31-32, 48, 63-64
bag 33, 51, 310
changeability 64
multiplicity 29-31, 48, 64, 78, 191
navigability 64
notation for 31, 65
ordered 32, 64, 78, 310
sequence 33, 51, 310
uniqueness of name 32
visibility 64

Index

attribute 2, 23-24
convention for 24
finding 192-194
missing compartment 26
multiplicity 61, 78
notation for 24, 26, 61
scope 62

autoboxing (in Java) 316

bag 33, 45, 48, 51, 310

batch transformation 257

boundary class 226, 289, 421

boundary condition 255

branch (in activity diagram) 142
notation for 142

C

C 288
C++ 62, 76, 288, 314-347
access control 315, 322-325
constructor 332-334
destructor 335-337
friend 323, 341
implementing
association 329-331
association class 330
class 322
data type 318-322
enumeration 320-322
generalization 325-329
namespace 315, 324
practical tips 341-342
candidate key 83, 350
cardinality 30, 61
change event 92
vs. guard condition 95
notation for 92
changeability 64
class 2,22
abstract 69-70, 81
ancestor 38
concrete 69-70, 81
convention for 23
descendant 38
finding 183-186
implementing

Index

for a relational database 352-353

in C++ 322
in Java 322
notation for 23, 26
class descriptor 75

class design 5, 167, 169, 270-297, 300

class generalization 3741, 163
vs. enumeration 61

class icon 80, 81

class library 242-243

class model 6, 17, 19, 21-59, 6087, 161
construction of 183-201, 224-227
vs. Entity-Relationship (ER) 50

navigation 4347

practical tips 4849, 81, 197-198

reverse engineering 418-419

vs. other models 123-124, 162-164, 224

227,233
classification 2
classifier 126, 163
client-server architecture 244
CLOS 25
closed architecture 245
command 225

Common Lisp Object System. See CLOS

completion transition 102

composite state 112

composition 6768, 73, 163-164
implementing 310

for a relational database 354

notation for 68

vs. aggregation 67-68
concrete class 69-70, 81

convention for 70

notation for 69
concrete signal 125
concrete use case 149

concurrency 90, 114-118, 124, 143, 246-248,

254,311, 349

notation for 115, 143

synchronization 116
condition. See guard condition
constraint 77-78, 81

exercise 83

in a relational database 350

on link 29

notation for 72, 78

on generalization set 77

on link 78
on object 77
constructor 316, 332-334, 341
container class 276
continuous transformation 258
control 17, 253-255
concurrent 254
event-driven 254
implementation of 226-227
merge 117, 143
procedure-driven 253-254
split 117, 143
controller 226-227
convention for
abstract class 70
association 28
attribute 24
class 23
concrete class 70
generalization 37
link 28
object 23
operation 25
package 80, 81
propagation 69
scope 62
state 92
state diagram 99
transition 95
value 24

D

data conversion 368-369, 372
data dictionary 187, 405, 418
data flow diagram 19
data type
enumeration 6061, 81, 194
implementing
in C++ 318-322
in Java 318-322
database 24, 250-252, 348-379
See also DBMS

object-oriented 62, 370-371, 372

relational 349-370
vs. files 251
database layer 368

database management system. See DBMS

471

472

DBMS 76, 116, 260-261, 348-349
See also database
choosing a product 351
delegation 72
as a substitute for multiple inheritance 73-75
to avoid improper inheritance 287-288, 328,
341, 384
Demeter, law of 289, 292, 370, 385
denormalization 351
deployment 167, 170
derived entity 79-80, 81, 186, 190, 340-341
exercise 86
for design optimization 281-283
notation for 79
descendant 38
destructor 316, 335-337, 342
development life cycle 170-171, 298-299
iterative 171, 395402
rapid prototyping 396-397
waterfall 170-171, 395-396
development stage 167-170
analysis 4, 167-169, 181-215, 216-239, 299
class design 5, 169, 270-297, 300
implementation 5, 169, 303-313
system conception 4, 168, 173-179, 299
system design 5, 169, 240-269, 300
DFD. See data flow diagram
diagram layout 48
directed graph
exercise 57, 374-375
direction (of an argument) 26
directionality (of association) 28
distribution 62, 140, 311, 349
do-activity 100
notation for 100
documentation 49, 388
domain model 4, 168
construction of 183-204
dynamic model 19
dynamic simulation 259-260

E

effect 99

encapsulation 6, 28, 369-370, 372, 384
enterprise model 404
Entity-Relationship (ER) model 50
entry activity 100-101, 103, 113

Index

notation for 101
enumeration 60-61, 194, 341
implementing
for a relational database 361, 372
in C++ 320-322
in Java 320-322
notation for 61
vs. generalization 61, 81, 195
essence of software 3, 8
event 90-92
finding 203, 219, 220-222, 229
notation for 99
event-driven control 254
exit activity 100-101, 103, 113
notation for 101
extend (for use case) 148, 151
notation for 148
extensibility 384-385
improved by use of inheritance 286
extent 62, 81

F

feature 2, 25, 62
file 250-252
final (in Java) 327
finding
associations 187-192
attributes 192-194
classes 183-186
generalizations 194-196
finite state machine. See state diagram
firing of transition 94
flowchart 140
focus of control 152
folding association attributes into a class 34, 48
foreign key 350, 360-361, 372
indexing 361-362
Fortran 288
fourth-generation language (4GL) 367
framework 243-244
friend (in C++) 315, 323, 341
functional model 19

G

garbage collection 317, 336, 337
generalization 7, 48, 163
See also inheritance

Index

class generalization 37-41
convention for 37
exercise 84
finding 194-196
implementing
for a relational database 356-358, 360,
362
in C++ 325-329
in Java 325-329
notation for 37
signal generalization 114
use case generalization 149-150
uses of 40
vs. enumeration 61, 195
generalization set name 39
global resource 252-253
guard condition 95, 103
vs. change event 95
notation for 95
guardian object 252
guidelines for programming 380-391

H

hardware 248-250
higraph 126

IDEF1X (database notation) 50
identity 1, 22, 24, 51, 73, 75, 193
exercise 12, 57-58
for a relational database 358-359
implementation 5, 167, 169
for a programming language 303-313, 314—
347
for a relational database 348-379
vs. policy 289-290, 381-382
include (for use case) 147-148, 150, 151
notation for 147
index 281-282, 361-362, 372
information hiding 6, 288-289, 369-370, 372, 384
inheritance 2, 7, 37-41, 48
See also generalization
abstracting out common behavior 285-287
misuse for implementation 41, 287-288, 384
multiple inheritance 70-75, 196
notation for 37
rearranging classes and operations 285

473

instance 2, 22
integration testing 311
interaction model 6, 18, 19, 131-146, 147-160,
162, 311
construction of 204, 216-224
reverse engineering 419-420
vs. other models 162-164, 224, 227, 233
interactive interface 259
interface (in Java) 316, 326, 341
is-a. See generalization
iterative development 171, 196-199, 395-402

J

Java 62, 76, 288, 314-347
access control 317, 322-325
constructor 332-334
implementing
association 329-331
association class 330
class 322
data type 318-322
enumeration 320-322
generalization 325-329
interface 316, 326, 341
package 316-317, 322-323, 323-324, 341
practical tips 341-342

key
candidate 350
foreign 350, 372
primary 350

L

law of Demeter 289, 292, 370, 385

layer 245-246

legacy data 368-369

library. See class library

lifeline 137, 152

link 27-36
convention for 28
creation 337-339
destruction 339-340
notation for 28

Lisp 76

lock 252

474

maintenance 167, 170, 422
memory management 315, 317, 332-340
mentoring 410
merging control 117, 143
notation for 118, 143
metaclass 76
metadata 75-76, 368
metamodel 404
exercise 85, 86, 130
method 2, 25, 62
model 15-18
class 6, 17, 19, 21-59, 60-87, 161
interaction 6, 18, 19, 131-146, 147-160, 162,
311
relationship among 18, 123-124, 162-164
state 6, 17, 19, 90-109, 110-130, 161-162,
311
modeling effort 413
modeling personnel 409-410
modeling pitfall 404406
modeling session 406-408
multiple classification 72, 73
multiple inheritance 70-75, 81, 196, 341
exercise 85, 86
implementing
for a relational database 358
in C++ 328
in Java 326
kinds of 71-72
notation for 72
workarounds 73-75
multiplicity 29-31, 48, 64, 78, 191
for an attribute 61, 78
notation for 29
vs. cardinality 30

N

name, importance of 48, 387
namespace (in C++) 315, 324
n-ary association 63, 64-66, 81, 83, 189-190, 310
implementing
for a programming language 66, 329
for a relational database 353
notation for 65
navigability 64
nested state 111-113, 163

notation for 112
nested state diagram 110-111
notation for 111
new 332
normal form 351, 372
notation for
abstract class 69
abstract operation 70
activity 99, 101, 140, 142
activity diagram 140, 155, 156
actor 134-135
aggregation 67
association 28
association class 33
association end 31
attribute 24, 26, 61
branch 142
change event 92
class 23, 26
composition 68
concrete class 69
concurrency 115, 143
constraint 72, 78
derived entity 79
do-activity 100
enumeration 61
event 99
generalization 37
guard condition 95
inheritance 37
link 28
merging control 118, 143
multiple inheritance 72
multiplicity 29
n-ary association 65
nested state 112
nested state diagram 111
object 23
operation 25, 26
package 80
qualified association 36
qualifier 36
scope 62
sequence diagram 152, 153, 154
signal 91
signal generalization 114
splitting control 117, 143
state 92, 97

Index

Index

state diagram 98
ternary association 65
time event 92
transition 95
use case 134135
use case diagram 134-135
use case extension 148
use case generalization 149
use case inclusion 147
value 24
visibility 63

null 46, 61, 349

o)

object 1, 21-22

convention for 23

creation 332-334

destruction 335-337

notation for 23
Object Constraint Language. See OCL
object diagram 23
object flow 156-157
object identity

for a relational database 358-359, 372

in C++ 320

in Java 320
Object Management Group. See OMG
Object Modeling Technique. See OMT
object-oriented, meaning of 1
object-oriented database 62, 370-371, 372
OCL

exercise 346
OCL (Object Constraint Language) 44-47, 51, 65

exercise 59, 208-209, 210-211, 379
OMBG (Object Management Group) 9
OMT (Object Modeling Technique) 9, 19, 50
OO-DBMS. See object-oriented database
open architecture 245
operation 2, 25

abstract 69

assigning to a class 276-278

convention for 25

finding 233-234

missing compartment 26

notation for 25, 26

query 79

scope 62

475

shopping-list operation 234, 236, 276
optimization of design 280-283
ordering 32, 33, 64, 78, 310
overloading (of methods) 315
override 4041, 49

P

package 80-81, 81, 290, 388
choosing during analysis 201
convention for 80, 81
Java 316-317, 322-323, 323--324, 341
notation for 80
visibility 62, 317
partition 245-246
part-whole relationship. See aggregation
passive object 152
pattern 200, 206, 243-244, 284, 411
peer-to-peer architecture 244
performance 241
Petri net 105
pointer 28, 48
exercise 57
policy vs. implementation 289-290, 381-382
polymorphism 2, 7, 25, 40, 315
postprocessor 367
practical tips
activity diagram 143-144
C+ 341-342
class model 4849, 81, 197-198
Java 341-342
relational database 371-372
sequence diagram 140, 154
state model 103, 124-125
use case diagram 135-136, 150-151
preprocessor 367
primary key 350
private 62, 315, 317, 341
procedure-driven control 253-254
product assessment 404
programming language 24, 62, 72, 76, 116
Ada 288
C 288
C++ 76, 288, 314-347
CLOS 25
coupling to a relational database 366-368,
372
Fortran 288

476

Java 76, 288, 314-347

Lisp 76

Smalltalk 76
programming style 380-391
programming-in-the-large 387-390
propagation 67, 68—69

convention for 69
protected 62, 315, 317, 324
public 62, 315, 317

Q

qualified association 36, 48, 64, 78, 191, 193, 310
implementing
for a programming language 329
for a relational database 354
notation for 36
traversal of 45
qualifier 36, 64, 193
notation for 36
query operation 79
query optimization 369-370, 372

R

race condition 102
rapid prototyping 396-397
RDBMS. See relational database
real-time system 260
refactoring 280, 383
reference 28, 48
exercise 57
reference (in C++) 315
reification 76, 284
exercise 86, 130
relational database 349-370
coupling to a programming language 366—
368, 372
data conversion 368—-369
implementing
association 353-354, 360-361
class 352-353
generalization 356-358, 360
identity 358-359
practical tips 371-372
relational DBMS. See relational database
requirements 176-178, 205-206
responsibility 273-274
reuse 40, 71, 201, 242-244, 348, 380-384

reverse engineering 416421
review 49, 311, 405406, 413, 415
risk (of development) 400401
robustness 385-387

S

scenario 136-137, 219-220, 311
schema 348
scope 62, 81, 83
convention for 62
notation for 62
script file 367
sequence 33, 48, 51, 310
sequence diagram 137-138, 152-154, 222
notation for 152, 153, 154
practical tips 140, 154
service 244
shopping-list operation 234, 236, 276
signal 91
abstract 114, 125
concrete 125
notation for 91
sending 102-103
signal event 91
signal generalization 114, 163
notation for 114
signature 25, 40, 63
simulation, dynamic 259-260
slicing 420
Smalltalk 76
specialization 40
splitting control 117, 143
notation for 117, 143
SQL code
vs. programming code 370
SQL language 349-370
state 92-94
composite 112
convention for 92
final 97
finding 202
initial 97
nested 111-113
notation for 92, 97
statechart 126
state diagram 76, 95-103
construction of 229-230

Index

Index

convention for 99
nested 110-111
notation for 98
one-shot vs. continuous 96
state model 6, 17, 19, 90-109, 110-130, 161-162,
311
construction of 201-204, 227-233
practical tips 103, 124125
reverse engineering 420
vs. other models 123-124, 162-164, 233
static 81, 334-335
stored procedure 367
subclass 2, 37
submachine 111
substate 118
subsystem 244-246
superclass 2, 37
swimlane 155
synchronization 116
system architecture. See architecture
system boundary 217
system conception 4, 167, 168, 173-179, 299
system design 5, 167, 169, 240-269, 300
system testing 311-312

T

table (in RDBMS) 349-350
ternary association 63, 64-66, 81, 83, 189-190
exercise 211
implementing
for a programming language 329
for a relational database 353
notation for 65
promotion to a class 66
testing 5, 167, 169-170, 310-312, 386387, 398
of class model 196
this 331
thread of control 248
time event 92
notation for 92
tool (for software development) 411413
training 167, 170, 410
transaction manager 260-261
transformation 303-306, 312
transition 94-95
completion 102
convention for 95

notation for 95
transitive closure 66
transitivity 66
traversal of association 64, 65
trigger 68

U

UML 9, 10, 11, 19, 50, 51, 83
UML2 vs. UML1 33, 106, 126, 163
undirected graph
exercise 56-57, 376-377
Unified Modeling Language. See UML
unit testing 311
use case 6, 132-136, 272-274, 311, 397
finding 218-219
notation for 134135
use case diagram 131-136, 147-151
notation for 134-135
practical tips 135-136, 150151
use case extension 148, 151, 223
notation for 148
use case generalization 149-150, 163, 223
notation for 149
use case inclusion 147-148, 150, 151, 223
notation for 147
user interface 259
specification of 225-226

\')

value 23-24
convention for 24
difference from object 24
notation for 24
view
for a relational database 362, 372
virtual method (in C++) 315, 327
visibility 62—63, 64, 315, 317, 384-385
notation for 63

w

waterfall development 170-171, 395-396
wrapper 421-422

X
XML 369, 422

477

State Model Notation

Event causes Transition between States: Initial and Final States:
event (attribs dition] / effect
(stater)RR (sez) @ (@)
Concurrency within an Object: Entry and Exit Points:

COmposneState stateDiagName]

[Substate1

Substate4
Nested State:

CompositeState
event1
Oe@stedStateHJestedStatez

i/ \L event3 event2

Start
event1

Activities while in a State:

event2 State
entry / effect1
do / activity
event1 / effect2
event2 / effect3

exit/ effectd

Splitting of control: Synchronization of control:

CompositeState

Substate3

event2

eventd4

Substate2 Substate4

Interaction Model Notation

Use Case Diagram: Activity Diagram:
SubjectName
———— T [condition1]
L j
Actorl [condition2]
—
™
/
Actor2 (activity2) activity’eD (activity4)
activitys
Use Case Relationships:
«include
ase -

@ ‘ Activity Diagram with Swimlanes:

' v Actor1 Actor2 Actor3
@ @ -activim
objectA ’ Lobjecta—l

| Activity Diagram with Object Flows:

-l

object(?l
oper2 (m. n) (Caotwiyt }—>1 iGhass actvity2

{# resuitt
—_—— = 3

Sequence Diagram:

—

oper1 (a,b)

i

resuit2

